上海金山经纬化工有限公司

上海金山经纬化工有限公司生产二甲基乙酰胺、新洁尔灭、十六十八叔胺、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十八烷基三甲基氯化铵、十二烷基二甲基氧化胺、十二烷基二甲基甜菜碱
详细企业介绍
十二叔胺、十二十四叔胺、十四叔胺、十六叔胺、十六十八叔胺、十八十六叔胺、十八叔胺、二甲基乙酰胺、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、三醋酸甘油酯、新洁尔灭、洁尔灭、工业洁尔灭、1227杀菌剂、杀菌灭藻剂1427、十二烷基。
  • 行业:有机化学原料
  • 地址:上海市交通路4711号李子园大厦1603-1605
  • 电话:021-52799111
  • 传真:021-5279****
  • 联系人:盛大庆
公告
企业博客-聚合企业员工、客户、合作伙伴等互动交流;推动企业内外信息自由地沟通;展示企业形象,传播企业品牌、文化理念;开展网上营销,推广企业产品和服务。
站内搜索

93343大红鹰高手论坛

东风-31弹道导弹的技术特点

  发布于 2019-09-30   阅读()  

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  早期西方数据中,东风31的载荷为700千克,当时与之匹配的弹体重量是20吨,仅仅是实际情况的一半。以东风31甲的技术水准,在重量接近SS-27白杨M(47.2吨)的情况下,不可能仅具备其60%的载荷。因此在较晚的数据中,一般给出来的都是1000-1750千克载荷。

  实际上,核弹头的性能将反映在对载荷的需求中,因而在没有载荷的直观数据情况下,可以从我国核武器小型化水平入手分析东风31的载荷。

  与第二代战略导弹配套的第二代核武器研制工作同样始于上世纪70年代中期。提出我国第二代核武器的发展方向是小型、机动、突防、安全、可靠。

  洲际导弹所配备的热核弹头的小型化,关键是初级的小型化,需要采用助爆原理(初级已不是纯裂变弹)。“助爆”的概念是指在裂变装置的中央加入少量的聚变材料,用低裂变威力引发聚变反应,使聚变反应放出高能中子再引起裂变,以此来提高初级的裂变材料利用效率。助爆初级包括“气体助爆”和“固体助爆”两种形式。前者是指聚变材料在武器中以氘氚气体的形式存在,我国应用于东风5核弹头;后者是指聚变材料在武器中以氘氚化锂-6的形式存在,即应用于第二代核武器。

  我国在80年代获得一系列突破,初级小型化原理已经突破,次级小型化的技术途径也已明确。为了满足实用的需求,适应小型化弹头的尖锥外形,把初级塞进鼻锥内,之后又研制了非球形构形的气体助爆初级,最终于1992年9月25日的核试验中取得成功。据美国人通过间谍手段获得的材料表明,该核装置的设计水平极高,仅比美国最先进的W88核弹头稍大。此次核试验中还采用了双轴针孔照相技术,开奖记录标志着我国的核试验测试诊断达到了国际先进水平。

  核战斗部方面水平我国已经达到世界先进水准,而我国在重入载具(ReentryVehicle,RV)方面水平相对落后一些。参照美国核弹头数据:较为先进的W87核战斗部的重量为150KG,加上重入载具MK21之后的重量约为360KG,标准当量是30万吨TNT,可以提高到W88的47.5万吨TNT水平。根据Johnstons网站的核试验数据库,在1992年进行的核实验所显示的当量最有可能与东风31系列的弹头吻合。但该数据库同时给出了65万吨TNT的估计值和100万吨TNT的最大值。假设我国核战斗部的水平高于W87而略低于W88和W87改:如果是65万吨TNT当量,则核战斗部可能在250-300千克左右,加上载具约为700千克左右;如果是100万吨TNT当量,则核战斗部可能在400-500千克左右,加上载具约为1000千克左右。尽管前一个700千克与早期推测数值较为接近,但作为突防手段,洲际导弹还需要携带诱饵。

  在某次CCTV军事频道曝光的东风31甲的操控屏幕上,可以清楚地看到“有速诱饵”和“再入诱饵”等字样。这两者均指重量10千克上下的重诱饵,在再入段模拟弹头特性,与在中段模拟弹头特性的轻诱饵明显不同。能够确信的一点是:东风31需要另外的载荷来承担诱饵的重量。如果东风31需要携带10-15个重诱饵外加数十上百的轻诱饵,这意味着上面两种情况的载荷总需求将分别达到800-900千克和1.1-1.2吨左右。实际情况很可能是:采用较大载荷时会牺牲一些射程,而保证最大射程时又需要采用较低的载荷模式,因作战需求而进行侧重点的选择。

  东风31甲的改进不仅局限于复合材料壳体的替换。东风31基本型号采用的是我国第二代固体推进技术,例如玻璃纤维壳体、HTPB推进剂、三维药型、碳-碳喉衬、柔性全轴摆动喷管等。而第三代技术新高能推进剂,石墨环氧纤维壳体,可抛式延伸喷管等在东风31甲的研制期间均取得进展,部分可能已经转为实用成果。

  其中最典型的技术是高能推进剂。一般而言,火箭固体燃料相对于液体燃料的优点在于储存性和结构简单性方面,缺点则是比冲明显较低。固体燃料中,比冲大于2450牛·秒/千克(即250秒)为高能,2255牛·秒/千克(即230秒)到2450牛·秒/千克为中能,小于2255牛·秒/千克为低能,而液体燃料很多比冲均可达到2800牛·秒/千克以上。于是高能固体燃料的开发已经是新型洲际导弹的关键技术。例如美国三叉戟I潜射导弹所使用的交联改性双基推进剂(Crosslinking Double BasePropellant,XLDB)理论比冲2646牛·秒/千克(270秒);三叉戟II潜射导弹使用的高能硝酸酯增塑聚醚(NitrateEster Plasticized PolyetherPropellant,NEPE)理论比冲2685牛·秒/千克(274秒)。我国对应NEPE的新燃料名称为N15,在《中国科学技术专家传略工程技术编航天卷II》中对崔国良院士的介绍中提到:“NEPE类推进剂,我们70年代开始摸索,80年代研制走入正轨,90年代初取得突破。93-98年分别完成300mm至1400mm直径发动机的演示验证试验。实际比冲达到约2500Ns/kg,比DF31用的HTPB提高约100Ns/kg。”而对湖南大学教授邓剑如的报道中也提到“开发N15高能推进剂……期间突破性地解决了DF-31型号配方中工艺与力学性能相矛盾的技术难题”。可见,东风31甲很有可能已经采用了类NEPE固体燃料,加上使用芳纶纤维/环氧树脂壳体减重等手段,这意味着载荷不变的情况下射程可以进一步增加到12000千米以上,或者保持11000千米左右的射程,增加载荷来提高突防能力。

  东风31采用惯性制导,而我国在该领域进步明显。根据《中国科学技术专家传略工程技术编航天卷II》记载,三浮陀螺已经于1999年研制成功,尚未肯定是否已经应用,该陀螺具有世界先进水平,有助于提高打击精度。至于国外所称的星光修正技术尚未见到确凿证据。国外媒体给出的CEP=300米数据应当与真实水平相差不大,随着惯导技术的提高和末修技术的改良,东风31有望接近国外先进水平,若能采用先进末制导技术,则打击精度有望提高一个数量级。实际上我国倘若仅仅执行最低核威慑政策,则无需过多考虑对付敌方洲际导弹发射井等硬目标时才会苛求的打击精度,反而生存能力和突防能力显得更加重要。

  东风31系列体积重量较上一代东风5明显缩减,13米左右的长度在所有陆基洲际导弹中是最低的,40吨级别的重量则是介于36吨的民兵III和47.2吨的白杨M之间。小型化为东风31实现机动部署提供了先决条件,这对于躲避侦察、提高生存能力是非常重要的。

  在阅兵式上展出的东风31甲仍然采用牵引-发射车分离的方式。根据西方报道,牵引车的型号是8×8型HY4330半挂牵引车(1999年开始研制,2000年6月完成试制,主要用于牵引DF31A型导弹发射车。但实际上我国已经成功应用了运输、安装、发射一体的TEL(TransporterErector Launcher)车辆。半挂牵引车的缺陷在于只能局限在公路上使用,而无法实现越野,生存能力有限。TEL的使用则代表获得了真正的机动生存性能。并且我国的TEL设计参照了美国Midgetman侏儒的一体发射车,避免了俄罗斯白杨TEL容易翻车的毛病。

  虽然生存能力高,但公路机动仍然有其缺陷:与固定地下井发射相比,公路机动发射系统的快速发射能力(快速起竖、调平、瞄准、测试、发射、撤离)较为落后,打击精度低。这也是为何东风31保留了地下井发射在内的多种发射方式的原因所在。